
Experimental Methods 

Gold and ITO surfaces were modified with thiol and silane chemistries to produce a grafting 

layer with an amine functional end group. Carboxyl terminated PNIPAM and a copolymer of 

PNIPAM and acrylic acid were separately attached to these surfaces to study ion transport 

effects.  

 

 

 

 

The surfaces were characterized with cyclic voltammetry (CV) using ferrocene carboxylic 

acid above and below LCST using a three-electrode configuration. CV was used to measure 

changes in ion transport at the surface by measuring redox activity. 
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 Conclusions. 

 Electrode surfaces can be modified and the electrochemistry altered using thermally 

responsive polymers. 

 Electrodes can not only be modified to inhibit electrochemistry at elevated 

temperatures as hypothesized, but also at lower temperatures allowing for either 

thermally controlled system: on at cold and off at hot, or off at cold and on at hot. 

 Surfaces were not fully controlled, only slightly altered.  Further research must be 

done to develop into practical application. 

 Different geometries and densities vary how ion transport is changed before and after 

LCST transition. 
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Future Work  

 Larger molecular weight polymers can be grafted to the surface to introduce a greater 

surface coverage at high temperatures to increase inhibition. 

 Polymers can be grafted from the surface as opposed to being grafted to in order to 

create a denser layer to increase inhibition. 

 The surface modifier can be changed in order to create a more perfect monolayer for 

the polymer to be coupled to creating greater order and eliminating “holes.” 

Discussion 

 Data shows a minor change in electrochemistry with respect to temperature in the 

blank  ITO as well as blank Au. 

 Oxidation peaks are more pronounced on ITO with COOH terminated PNIPAM at 

room temperature, but worsen with LCST transition. 

 Oxidation peaks are more pronounced on ITO with PIPAM/acrylic acid copolymer 

after LCST transition, but are less defined at room temperature. 

 All gold data shows  an increase in redox activity with increase in temperature, but 

gold substrates are older and yield less reliable data. 

 Copolymer geometry possibly creates larger radius of gyration inhibiting ion diffusion 

at low temperatures but shrinks to allow diffusion at high temperatures. 

 PNIPAM chains with functional end possibly form a brush that becomes more dense 

after transition inhibiting ion diffusion. 

 PANI shows electrochemical loss after LCST for both polymers, but more pronounced 

for COOH terminated.  As the overall change is greater and the same for both 

polymers it is expected surface density of the polymer affects changes in ion 

transport. 

Introduction  

 Electrochemical systems such as batteries rely on ion   

transport at an electrode surface. 

 Smart systems with variable electrochemistry dependent on 

temperature could be used in batteries and biosensors. 

 Thermally responsive polymers change structure at a lower 

critical solubility temperature (LCST). 

 

Objectives 

 Goal: To modify and electrode surface with poly(N-isopropylacrylamide), PNIPAM, to 

create a thermally responsive surface. 

 Hypothesis: A PNIPAM layer will limit electrochemistry at elevated temperatures while 

scarcely affecting it at lower ones. 
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Polyaniline (PANI) electrodes were polymerized at constant potential.  

Polyglycidyl methacrylate (PGMA) was synthesized radically.  The PANI 

electrodes were dip coated in PGMA and annealed.  A PGMA coated electrode 

was then dip coated in carboxyl terminated PNIPAM and another in the PNIPAM 

copolymer, then annealed.  Both were characterized using sulfuric acid above 

and below the LCST. 
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