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• Current solutions to 

carbon emissions are 

expensive and 

inefficient 

 
• Goal: Create membranes with high CO2/N2 

selectivity and permeance 

• PAN (polyacrylonitrile) ultrafiltration membrane 

modified with: 

1. Addition of gutter layer + ionic liquids 

2. Addition of gutter layer + perfluorocyclobutyl 

 

http://forums.

accuweather.

com/index.ph

p?showtopic=

7758&st=20 
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• Testing Supported Ionic Liquid Membranes (SILMs) for 
CO2/N2 permeance and selectivity 

 

 

 

• Addition of a CO2 selective, ultrathin, non-porous 
barrier to the membrane to enable SILM operation: 

• at higher pressures 

• for longer periods of time 

 

 

Permeance of CO2 

 and N2 through  

an unmodified membrane 

Permeance of CO2 

through an membrane 

loaded with ionic liquid  
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• Ionic liquids show high CO2 solubility and diffusivity. 

• CO2 solubility = 0.103 mol L-1 atm -1 

 

aij =
Pi

Pj
=
DiSi

DjS j

Pi = SiDi
P = permeability of  gas

S = gas solubility

D = gas diffusivity

a = ideal  selectivity of  a membrane
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• Test ionic liquid loading methods to ensure an even 
load across the surface 

• Loading time 

• Desiccant 

• Vacuum + Desiccant 

• Overcome a loss of ionic liquid 

• Test ionic liquid loading into modified membrane 

• Measure membrane performance 
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Procedure and Apparatus 

• Ionic liquid loading 

• 500 microliters EMIM-Tf2N 

• Load for 30 minutes, 6 hours, and overnight 

• Testing Apparatus 

• Test from 5 – 10 psi to 20-25 psi 

 

Sigma Aldrich 

Permeance =
P

RTADP

dV

dt
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0.00 0.05 0.10 0.15 0.20 

Overnight Load of EMIM-Tf2N 

6 Hour Load of EMIM-Tf2N 

30 Minute Load of EMIM-Tf2N 

Percent Loss of EMIM Tf2N During 
Testing 

After Testing to 10 psi After Testing to 25 psi 
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• Lack of selectivity 

• EMIM-Tf2N is cited as having a CO2/N2 
selectivity of 23.1. 
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• Application of Gutter Layer Over Both Sides of Ionic 
Liquid Loaded Membrane 
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• Support Membrane Coated with Barrier Layer Before 
Loading EMIM-Tf2N 
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Figure 1: Selectivity of Gutter 

Layer Only 

Figure 2: Selectivity of Gutter Layer with 

the Addition of EMIM-Tf2N 
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• Support Membrane Coated with Barrier Layer Before 
Loading EMIM-Tf2N 

0.00 0.05 0.10 0.15 0.20 0.25 

Addition of EMIM Tf2N to Barrier Layer 
Coated Membrane 

Percent Loss of EMIM-Tf2N During Testing 

After 10 psi After 15 psi After 20 psi After 25 psi After 30 psi 
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• The loss of ionic liquid may lead to a lower selectivity. 

• The barrier layer does not perform as expected when 
placed over the SILM. 

• The barrier layer may be compromised by the addition 
of ionic liquids. 

 

 

• Use AFM imaging to determine if the ionic liquid is 
compromising the barrier layer.  
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Overview 

• Glassy polymeric membranes have a good balance of 
permeability and selectivity 

• However, they are also affected by issues such as aging 
and plasticization effects, especially in thin films 

 

From bottom to top: 

support layer: highly porous and permeable  

gutter layer: selects for CO2 but still very permeable 

selective layer: selects strongly for CO2 
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Overview 

Plasticization
   

Increases permeability, 

decreases selectivity 

Decreases permeability 

 

Eventually dominates 

over plasticization 

Aging 

CO2 
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Goals 

• Explore effects of selective layer thickness of 

PFCB polymer composite membranes on CO2 

plasticization 

• Test membrane permeance for single gas (CO2 

and N2) and CO2/N2 mixed-gas mixtures  

From bottom to top: 

support layer: polyacrylonitrile (PAN50) 

gutter layer: proprietary material 

selective layer: perfluorocyclobutyl (PFCB) 

biphenylvinyl ether (BPVE) 
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Experimental Apparatus 

Large and small 

cells for gutter layer 

and PFCB testing, 

respectively. 

• 0.30wt% gutter layer solution 

• 0.25-1.00wt% PFCB/chloroform solution, withdrawal speeds 100 mm/min 

or 211 mm/min 

• Measure permeance of composite membranes at 20-500 psi  

• Calculate permeance of PFCB layer using 

 

 

 

where Perm = permeance, p = pressure, P = permeability, σ = thickness, and 

r = resistance 

11
( )a b

a b

flux P
Perm

p r P P

 



    

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Membrane AFM Images 

PAN50 membrane 

1 x 1 um. The porosity is 

approximately 50%, and RMS 

(roughness ) = 2.5 nm. 

Plasma-treated gutter layer 

membrane 

1 x 1 um. RMS =1.5 nm. 

PFCB coated membrane 

1 x 1 um. 50 to 80 nm thick. 

RMS = 1.1 nm.  
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Thickness and Plasticization 

Thickness has a clear effect – the thinner membranes 
(with higher permeance) experience more plasticization 
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On average, CO2/N2 selectivity decreased from 15.96 (standard deviation = 3.80) to 

10.52 (standard deviation = 4.14) 
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Aging and Plasticization 

• Aging does not appear to change much 

• Further studies should be conducted with more 
repetition and longer aging times 
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• Composite membranes with a thinner selective layer 
plasticize more  

• Aging does not appear to affect plasticization 

 

• Continue to study effect of thickness and aging on 
plasticization 

• Use ellipsometry to study PFCB swelling in CO2 

 

 

 


