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ResultsIntroduction 

� Seawater desalination is an increasingly important 

alternative for producing fresh water.

� Seawater desalination processes are plagued by 

foulants, decreasing the water flux, impeding process 

efficiency, and shortening membrane life.

Objectives

� Explore the use of negatively charged nanoparticle (NP) 

coatings composed of titanium dioxide (TiO2-PA(-)) and 

silver (Ag-PA(-)) on reverse osmosis (RO) membranes to 

facilitate the removal of foulants and to regenerate the 

membranes.

� Effectively deposit NPs on the membrane.

� Utilize a pH soak to  remove the NP coatings.  

Experimental Methods

PolyDADMAC (pD), a positively charged polymer, was used as a 

bridge between the RO membrane (Filmtec SW30HR)  and the 

negative nanoparticles, which are incorporated with polyacrylate 

polymers, to enable effective deposition on the membrane surface.  

Ten percent TiO2-PA(-) and 10% Ag-PA(-) solutions, along with 0.2% 

pD solution, were used to coat the membranes through a self-

adsorption method.

The membranes were run through an electrokinetic analyzer 

(SurPASS, Anton-Paar, Austria) after deposition and removal 

processes to determine their surface charge, or zeta potential.  Single 

measurements were taken at a pH between 5.50 and 5.80.

Nanoparticle coating removal experiments were performed by soaking 

the coated membranes in solutions of pHs 1 and 13 for 6 hours.

Contact angle measurements confirmed deposition.  Scanning electron 

microscopy (SEM) confirmed coating deposition and removal.

Discussion

Nanoparticle Deposition on Membrane Surface:

� Self-adsorption enabled pD to adhere to the surface of SW30HR 

membranes, as demonstrated by the increase in zeta potential in 

Figure 3.

� Self-adsorption of the TiO2-PA(-) and Ag-PA(-) NPs to the pD 

coated SW30HR membrane decreased the zeta potential from 

that of the pD coated membrane (Figure 3).

� Comparison of Images (a) and (b) in Figure 5 illustrates 

deposition of Ag-PA(-) NPs  through the appearance of white 

areas in Image (b).

Coating Removal:

� pH 1 soak restored the zeta potential near that of the virgin 

membrane (Figure 3) for both NP coated membranes, 

demonstrating some removal of the pD and NP coatings.  

� Incomplete removal of Ag-PA(-) NPs after pH 1 soak is evident in 

Image (c) of Figure 5 through the appearance of small white 

areas.

� pH 13 soak increased the zeta potential compared to the NP 

coated membranes (Figure 3), showing NP removal and small 

degrees of pD removal.

� Effective Ag-PA(-) NP removal is evident in Image (d) of Figure 5 

through no appearance of white areas. 

Conclusions

� TiO2-PA(-) and Ag-PA(-) NP coatings on SW30HR 

membranes can effectively be deposited through self-

adsorption with a pD bridge layer.

� pH 1 and pH 13 soaks remove the NP coatings.

Future Work

• Examine the use of ionic-strength techniques to remove 

coatings.

• Consider the effects of each coating on water flux.

• Investigate the  effectiveness of foulant removal via 

nanoparticle coating removal.

• Apply coating removal to the desalination process. 
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Figure 2: SurPASS titration curves for virgin and 2% pD coated SWC4 membranes 

(Hydranautics). The pD coating increased the zeta potential compared to the virgin 

membrane. 

Figure 3: Zeta potential measurements for deposition and removal procedures.

Figure 5: SEM images with magnification 

x10000. (a) polyDADMAC coating. (b) Ag-

PA(-) coating. (c) Ag-PA(-) coating after 

pH 1 soak. (d) Ag-PA(-) coating after pH 

13 soak.

Figure 4: Contact angle measurements using sessile drop method. 

pD increases the membrane’s hydrophobicity, while TiO2-PA(-) and 

Ag-PA(-) coatings are similar in hydrophilicity to the virgin 

membrane.

Figure 1: SurPASS streaming current 

measurement cell. The SurPASS 

calculates the zeta potential of the 

membrane surface by measuring the 

streaming current with the electrodes 

on both ends of the sample cell.  
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